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ABSTRACT
Batching is a commonly used method for calculating confidence in-
tervals on the mean of a sequence of correlated observations arising
from a simulation experiment. Several.recent papers have considered the
effect of using too many batches. The use of too many batches fails to
satisfy assumptions of normality and/or independence, resulting in in-

correct probabilities of the confidence interval covering the mean.

=" D This paper considers the effects of using fewer batches than are

necessary to satisfy normality and independence assumptions. Using too
few batches results in 1) correct probability of covering the mean, 2)
an increase in expected half Length, 3) an increase in the standard de-
viation of the half Length, and 4) an increase in the probability of
covering incorrect values of the mean (analogous to Type II error in hy=
pothesis testing). These effects, quantified here, are shown to be
small when at least eight to ten batches are used, with Least effect on
confidence intervals having low confidence values. With the effects of
using too few batches quantified, a simulation practitioner can make the
trade-off between tﬁe ease of using very few batches with known indepen-
dence and normality versus using a batching algorithm to Squeeze some
remaining information from the data. For researchers developing batch-
ing algorithms, the results are useful in selecting initial batch sizes.
The results may also be useful in the context of using independent re-

plications to establish confidence intervals on the mean.
~
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Finally, some criteria and a procedure are suggested for Monte Car-
Lo comparison of confidence interval procedures, ‘These suggestions are

not restricted to batch mean algorithms,
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1. INTRODUCTION

The determination of confidence intervals on the mean of a process
arising from simulation éxperiments has been a problem of long standing
interest for computer simulation practitioners and researchers. Five
approaches have evolved: independent replications, batching, regenera-
tion, autoregressive representation, and spectral analysis; as dis-
cussed, for example, in Fishman (3], Kleijnen [4] and Law and Kelton (8,
9]. We discuss only the first two here, with emphasis on batching.

Consider observations X1,XZ,...,xn from a simulation experiment.
We assume that the output is a covariance stationary process; i.e., all
initial transient effects have been removed. Let u denote the process
mean, and let Rh denote the h lag covariance E{(xi'")(xi+h'")}' We as-
sume that Rh < Rh+j for j = 1,2,.... The variance of the process is Rg.
also denoted in this paper as 02. The h lLag autocorrelations are

h = RhIRO. The point estimator of u considered here is the sample mean
X= z xiln, which has expected value E{X)=u and variance V{X}tcozln,

Hherlsz =1+2 h:1_(1'(h/ﬂ))°h is the number of correlated observations

containing the same information as one independent observation.
Batching, discussed as early as 1963 by Conway (1], is a conceptu~

ally straightforward method for computing confidence intervals on u by

transforming correlated observations into fewer (almost) independent and

(almost) normally distributed observations. Define the k batch means
in

L
j=(i=1)m#1

iﬂ = leu for i=1,2,...,k; where m is the batch size n/k.




AR )

o ARG R T e

We assume either that the problem of n/k not being integer is insignifi-

cant or that n/k is integer. The mean of each bat;h mean is E(X}}=u and
the sample variance is s:=(.; Y? - EYZ)/(R-1). If k is chosen small
enough that the dependence1;ltueen the batch means and the nonnormality
of the batch means are negligible, then SEIk is an unbiased estimator of
VGO and a valid (1-0)100% confidence interval on u is X+ H. Here

H /VK is the half length of the confidence interval, with

k = tarz,k-15
talz,k-1 denoting the 1-(a/2) quantile of the t distribution with k-1
degrees of freedom.

The primary question facing both practitioners and researchers is
the selection of the appropriate number of batches k. If the only goal
were to have a confidence interval which has a probability of 1-a of
covering the mean, then k=2 would always be optimal, since the two
batches would each contain the longest possible number of observations
(allowing the central Limit theorem to create normality) and would tend
to be less correlated (since the observations in the batches are farther
apart), thereby best satisfying normality and independence assumptions.
However, other measures of goodness are important. Probably the most
used criterion, other than probabiiity of coverage, is the expected half
Llength of the confidence interval, E{Hk}. The Loss of information which
occurs with the exfreme batching associated with k=2 causes E{Hk} to be
much Larger than if more batches are used, as seen in Sectjon 2. In
general, the more batches used, the less information Lost and the short-
er the expected half Length. Thus there is a tradeoff between expected

length and coverage which makes the selection of number of batches dif-

ficult,

o —




We examine here the penalty of using fewer batches than are ‘neces-
sary to satisfy normality and independence a;sunptions. When k is
smaller than necessary, normality and independence still hold, but the
loss of information causes deteriorating performance of the confidence
intervals. 1In addition to measuring this deterioration of the perfor-
mance by the probabiliiy of covering u and the expected haltf Length
E{Hk}, two other measures are suggested here: standard deviation of the
half Length, \/VIHk}, and the probability B(u1) of covering points
¥y # u. The variance of the half Length is important since a confidence
jnterval procedure with high variance gives false signals as to the ac-
curacy of the estimate on a large fraction of the simulation runs. The
probability of covering points which are not the true mean is analogous
to type 11 error in hypothesis testing —— the lower the probability the
better the procedure. Curves analogous to operating characteristic
curves are the subject of Section 3. Section 2 gives properties of the
half length Hk' Section 4 discusses implications of the results of Sec-
tions 2 and 3 for both practitioners and researchers. Section 5 sug-
gests that the probabilities of coverage be used to compare confidence
interval procedures, analogous to comparing alternative tests of hy-

pothesis with operating characteristic curves.

2. PROPERTIES OF THE HALF LENGTH
To discuss the effects of too few batches, we need to first estab-
Lish a base point for comparison. Let k" and m* denote the number of
batches and batch size, respectively, that are necessary for the nonnor-
mality of the batch means and the dependence of the batch means to be

negligible. Establishing values for these quantities is difficult, but
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for our purposes they need not be actually determined. For siublicity
in the following analysis, we assume that k* bagches are sufficient to
provide exact normality and independence and therefore exact 1-a level
confidence intervals. This assumption of exact normality and indepen-—
dence is relaxed at the end of Section 4.

The assumption that hh decreases as h increases, made in Section 1,
jmplies that using fewer than k* batches will also result in normality
and independence. This is usually a valid assumption, but, for example,
Schriber and Andrews [12] consider sequences of independent trivariate
normal observations for which the results of this paper do not hold,
since there -* = 3 satisfies normality and independence exactly, but m =
&, 5,7,8, 10,... do not.

Consider the expected half Length resulting from k batches. E{Hk}
is dinversely proportional to the square root of the sample size n when
observations are independent, and even for correlated observations a
quadrupling of the sample size will cut the expected half Length to
about one-half its original value. The same is not true for the number
of batches, k, when n remains constant. This is because sk' the stan-
dard deviation of the k batch means, is a function of k. Similar
results are true of the variance of the half length, V(Hk}. Neverthe~-
less, changing k doés affect these properties, as shown in Table 1.

Table 1 shows ECH.} and VV(H} for k = 2, 3, 4, 5, 6, 10, 30, 61,
121, and = and for o = ,10, .05, and .01. The units are V{X} = co/v/n,
making the tables valid for all values of u, ol and n. The correlation
structure between the batches is not a factor so long as k < k#, since

then the batch means are independent and normally distributed. The as-
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sociated t distribution quantiles are shown, as well as the dimension-
less bias ratio r = E{sk/\/R}/\/VTX}, upon uhiéh the other quantities
depend. The values in Table 1 are derived in Appendix A. Note that the
values are deterministically calculated, rather than being the result of

Monte Carlo experiments.

Table 1 about here

As expected, E{Hk) decreases monofonically as k is increased for
all values of o. The rate of decrease is much lLarger for small values
of k than for lLarge values. In fact, the decreases in E{Hk} associated
with dincreasing k from ten to infinity is only about twelve percent for
a=,05. The correct comparison is not between ten and infinity, however,
but between ten and k*, since more batches than k* do not result in
valid confidence intervals. The decrease in length is about ten percent
when k*=61 and about eight percent when k*=30.

Although the expected half length is robust for k > 10, the stan-
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dard deviation exhibits a different pattern. While also decreasing as k
increases, and decreasing more rapidly for small values of k then for
large values of k, \/VIHk} is affected more by k than is E(H,), indicat-
ing that the stability of the confidence interval associated with Lless

i, variance may be a reason to exert more effort to use many batches. How-

e

ever, again k should not be compared with the Limiting results at infin-

ity, but rather with k*. For a=,05 and k=10, the variance 'is decreased
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about 48 percent if k*=30 and about 65 percent if k*=61. Thus the major

Max

benefit of using more than ten batches may be more in reducing V{Hk}

than in reducing E{Hk}.
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3. PROBABILITIES OF COVERAGE

Although consideration of the moments of the ﬁalf length are intui-
tively appealling, a more comprehensive criterion is to compute the pro-
bability, B(u1), that the confidence interval covers W, as a function
of w, i.e., B(u) = PO - H < uy <X+ H). When uy = u this is the
commonly considered probability of coverage of the mean, analogous to
one minus the probability of type I error when testing hypotheses. When
My # u this probability is analogous to the type II error. The coverage
function 1is more comprehensive than the expected value and variance of
the half Llength because the coverage function considers the performance
of X and Sk together while the half length is a function of sk only. 1In
addition the coverage function is directly related to the final product
== covering the mean of the process.

We are interested in calculating the probability, 8(u1), of cover-
ing u, as a function of u, #, n, a and k when k < k*. Results for
a= ,10, .05 and .01 are shown in Figures 1, 2, and 3, respectively.
Each figure is valid for all values of u, u1, 02 and n by plotting the
probabilities of coverage as a function of Gk = |u1-u|(n/(coz))1’2. The
derivation of the values, based on the noncentral Student's t distribu~

tion, is given in Appendix B.

Figures 1, 2 and 3 about here

For k < kv, the following patterns emerge from Figures 1, 2,’ and 3:
1. The probability of covering u (corresponding to &=0) is (1-a)
fOF k = 2' 3' eveyp k*.

2. The decrease in B(u1) due to incrementing k by one decreases as

k increases.
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3. The decrease in B(u1) due to incrementing k by one decreases as
@ increases.

4, The decrease in B(u1) due to incrementing k by one is smalt
when § < 1,

5. The decrease in B(u1) due to incrementing k by one is indepen-
dent of n, other than that k* increases with n.

As with moments of the half Length of the intervals, it is impor-
tant here to distinguish between the effect of increasing the sample
size n and increasing the number of batches k. For an increase in the
number of observations n, there is a corresponding increase in § by a

factor of n1/2

, and a corresponding decrease in the probability of cov-
ering any point M other than uy=u. The effect of increasing the number
of batches k is much Less. For exampie, when o=.,05 and k=10 tripling ¢
from 6=1 to 6&=3 (i.e., increasing n by a factor of eight) reduces the
coverage from .87 to .23. However tripling the number of batches from

k=10 to k=30 reduces the coverage from .86 to .83 when §=1 and from .23

to .18 when §=3,

4., IMPLICATIONS
The results of Sections 2 and 3 quantify the effects of using too
few batches. Here we discuss the implications these results have for
both practitioners and researchers interested in developing algorithms
to determine the number of batches to be used. )
When running a simulation experiment, the practitioner faces two
constraints: (1) The run must be long enough to provide the desired ac-

curacy and (2) the run must be lLong enough to calculate a valid confi-

dence interval. (For a related discussion, see Lavenberg and Sauer (5,

A
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p. 5551.) Now if the latter constraint comes into play, then using a

small number of batches will allow the simulation run to be terminated
earlier than if more batches are demanded, while still resulting in a
confidence interval with correct coverage. The results of the last two
sections can be used to determine the penalty for using a specific
(small) number of batches.

Probably a much more common situation is when the accuracy required
forces the run to be longer than the number of observations necessary to
establish a valid confidence interval. The results of Sections 2 and 3
show that there is seldom a need to use more than k=30 batches and that
k=10 batches contain almost all the information in the data regardless
of the number of observations n. Thus the practitioner should seldom
exert much effort to increase the number of batches when k>30, and hard-
ly ever when k>60.

The implication for researchers interested in constructing algo-
rithms for determining batch sizes is to place Less emphasis on obtain-
ing very large numbers of batches. Four batching algorithms have ap-
peared in the literature: Law and Carson [7], Mechanic and McKay [10],
Fishman [2], and Schriber and Andrews [12]. We discuss the implications
of the results of Sections 2 and 3 on each.

Law and Carson.require a minimum of k=40 batches. This research
shows that a minimum of k=10 batches will be almost as effective and
result in shorter runs. The algorithm could be modified to try initial-
ly for 40 batches, but before doubling n, k=20 batches could be checked.
If k=20, fails, then try k=10. If k=10 batches fail, then double the

sample size n, keeping k=10, since it appears that the first constraint
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above applies. Similar comments apply to Mechanic and McKay who ‘use a
minimum of k=25 batches. ‘

Fishman's algorithm requires k > 8, not because of considerations
concerning the interval, but because the test used to detect correlation
between the batch means fails for small values of k. This algorithm be-
gins with k=n and iterafively halves k. Samples of size n=2048, 4096,
8192 and 16384 are used for experimenting with the algorithm, and n=111,
716 is discussed as being necessary in not unreasonable situations. The
results of Sections 2 and 3 indicate the initial value of k could be
substantially smaller with almost no deterioration in the confidence in-
tervals.

Schriber and Andrews modify Ffishman's algorithm by considering
every possible batch size yielding k > 8 and selecting the value of k
corresponding to the test statistic least indicating correlation between
the batch means. Their algorithm could be modified to consider all pos-
sible batch numbers between eight and some value between thirty and six-
ty. Rather than selecting the number 6f batches with the test statistic
value closest to zero, the algorithm could be modified to consider the
advantages of larger values of k. For example, if k=8 is indicated, but
k=30 also easily passes the correlation test, then k=30 should be con-
sidered because of its better properties.

Another implication concerns calculating confidence iptervals on
the mean based on the use of independent replications, for which nota-
tions similar to batch means may be defined. Let Y} denote the sample

h

average of the ith simulation run having m observations, i=1, 2, ..., k.

k
Then the point estimate of u resulting from the k runs is X =

X./k
ji=1
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= .g xi/n. A confidence interval may be calculated based on X and Sk
ex;ZILy as with batch means. For a detailed compérison of replications
and batch means, see Law [6].

Since each replication has an associated overhead of initializing
the run and removing the initial transient effects, k=2 replications
have an advantage compared to using more replications. The m=n/2 obser-
vations per run give 7} and ié the best chance of being normally distri-
buted. Independence is guaranteed for all values of k by using dif-
ferent random number seeds. Therefore k=2 minimizes computation and has
the best chance of satisfying the assumptions necessary for obtaining
the desired level of coverage. However, the resulting confidence inter~
vals have a larger expected half Length than when larger values of k are
used. Thus a trade off between initialization cost and information loss
must be made, just as with batch means.

The results of Sections 2 and 3 imply that every effort should be
made to use at Lleast eight to ten replications, but that little gain
results from using many more than ten or twenty replications. Since in-
jtjal transients are often a major factor when using independent repli-
cations, our recommendation is to use more than ten batches only when
the cost of dealing with the initial transient effect is very small.
This is a very general recommendation, but hopefully the quantification
of effects 1in Sections 2 and 3 will be useful for practigioners when
making the tradeoff between few and many replications.

A final implication concerns the lack of knowledge about k%, the
number of batches for which nonnormality and dependence of the batch

means are negligible. In the analysis of Sections 2 and 3 we assumed
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that k* batches were sufficient to provide normality and jndependence
exactly. Since in most simulations, some viotat%bn of the assumptions
occurs for all batch sizes, there is some advantage to using smaller
numbers of batches which is not reflected in the analysis. That advan-
tage is that the smaller number of batches will more closely satisfy
normality and independenﬁe, thereby yielding more exact coverage proba-

bilities for the mean.

S. COMPARING CONFIDENCE INTERVAL PROCEDURES

The analysis of coverage functions in Section 3 leads to a general
method for comparing confidence interval procedures. Just as two tests
of hypothesis can be compared by calcutating operating characteristic
curves, procedures for calculating confidence intervals can be compared
by empirically estimating the coverage function for various values of a
and . Before stating the empirical procedure explicitly, first con-
sider Figure 4, which summarizes the information in Figures 1, 2, and 3
for k=10 and k==. Contours of the coverage probability B8 are plotted as
functions of a and 8. (Recall that § and ¥y differ only in Location and
scaling, so alternatively the & axis may be thought of a rescaled ¥y
axis.) The solid curves corresponding to k = « are all Llower than the
dashed curves corresponding to k=10, indicating that the larger numbers
of batches are preferable, as lLong as the normality and independence as-
sumptions hold. Also as long as these two assumptions hold, ‘the contour
curves intersect the a axis at 1-8, This property corresponds to the
coverage function described by Schruben [13], who suggests that confi-
dence interval procedures be compared by empirically determining the

probability of coverage of ¢the mean as a function of a, Thus the




suggestion made here is to generalize Schruben's coverage function to be

a function of Uy as well as a.

The Monte Carlo estimation of the coverage function is straight-
forward. Let °j' j=1, 2, ..., J, denote the a values of interest, such
as .2, .1, .05, and .01. Let B, #=1, 2, ..., L, denote the B values of
interest, say .7, .8, .9,.and .95. Perform R replications. 1In replica-

tion i, calculate the J confidence intervals (v,

ij* "i" using the pro-

]

cedure of interest, and store these values either explicitly or in 2J
histograms. Then for j=1, 2, ..., J and %=1, 2, ..., L; estimate "jz
such that P(Vj 5-“jz.§ uj) = B,, where vj and Hj are random variables
denoting the lower and upper bounds of the confidence interval. The
confidence contour corresponding to each Bz can be plotted using the
points (“jz' uj), i=1, 2, ..., J. Note that there are two values of
“jz' one Lless that u and one greater than u, as shown in Figure 5, but
that symmetry allows Figure 4 to show only the greater value.

The estimation of "jn involves the estimation of quantiles, which
is a bit more involved than the estimation of fractiles. If the results
are not to be plotted, the above procedure can be modified to simply in-
crement a counter cjm for each replication that confidence interval j
covers u , where Vpr @1, 2, ..., M, denote the values of ¥y of in=

terest. Then the estimator for Bjm' the probability of a (1-aj)1ooz

confidence interval covering um

s, 18 cjm/R.




APPENDIX A

We derive here the bias ratios r, the expected half Lengths E(Hk},
and the standard deviations of the half Llengths \/VTHR} needed for Table
1. When k < k*, the assumptions of independence and normality of the

batch means are satisfied. Then sk has a chi distribution with mean

ECS,) = ok(Zl(k-1))1/2

viation of the k batch means and T'(*) denotes the gamma function. Also

rck/2) / ri(k=1)/2), where % is the standard de-

when k < k+, ok/\/F = /VIX>. Since by definition r = E{Sk\/F)I,fVTY},
we have r = (2k/(k=1)1/2 1(k/2) / TC(k=1)/2), which is dimensionless.
The expected half Length is E{Hk} = tnlz,k-1 E{sk}/\fF. From the
definition of r, we have directly that E(H DY = tch,k-1 r in units of
JIX3,
The variance of the half Llength is V(Hk} = E{HE} - Ez{ﬂk} =
2

2 - 2 : 2
/2, k=1 B}/ &k (tOIZ,k~1 r VXD, Recalling that E(S(} = Oi

for all k < k* and taking the square root to obtain the standard devia-

t

tion yields YV = to,p g (1-rDV/Z in units of ¥,
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APPENDIX B
Figures 1, 2, and 3 show the probability of covering uy as 2 func-
tion of ¥, n, k, 02. These probabilities may be derived by noting that

the probability of coverage P(l!=n1l5yk) is equal to

X N
o /VE o IvE
a2,k-1 < /% £ tasz,k-1) M

P(-t

where o, is the standard deviation of the k batch means, Ffor all k <
k', (!=u)l(ak/\/1b is a standard normal random variable and the batch
means are independent. Therefore the entire center expression in (1)
follows a noncentral Student's t distribution with k=1 degrees of free-
dom and noncentrality parameter Gks(u-u1)l(ckl\/i). Again since k < ke,
°k"/E = VV(), yielding Cks(u-u1)l\/VTR}. Using the expression for
VEX) in the introduction, we have &=x(u=uy) (n /co?NV/2,  Since the
probability of coverage is the same for both 25,, Figures 1, 2, and 3

are drawn using Ile to save space. The required noncentral t values

may be found in Owen £11]1.

' This resesarch was supported by the Naval Analysis Program of the
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Comparison, by number of batches k, of the probability
of covering points 8¥V{X} from u when a=.10.

Comparison, by number of batches k, of the probability
of covering points 6¥V{X} from u when a=.05.

Comparison, by number of batches k, of the probabilities
of covering points §/V{X} from u when a=.01.

Comparison of k=10 batches with the limiting case k==,

Cumulative distribution functions for the lower and
upper confidence interval bounds for k=10 independent
and normally distributed batch means, a=0.10.
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